Under pressure: tackling railway connectivity in 2016 (downloadable guide)

Railway connectivityWireless connectivity on trains is set to become a key area of focus for the wireless industry over the coming years. On-board connectivity remains a significant technical challenge; providing connectivity to people within a fast-moving object that often encounters mobile blackspots is inherently difficult. However, pressure is rising from governments and passengers to improve the current levels of wireless service available on trains.

Currently, enhanced on-board wireless solutions face two major barriers. The first is how to enable cellular connectivity. The second is how to secure sufficient capacity for on-train usage and the necessary backhaul where on-train Wi-Fi is installed. While the technologies are available today to solve these challenges, the business case for moving connectivity along remains largely elusive.

rail-connectivityNow though we are seeing some interesting moves in the market that may help to break the commercial deadlock we have seen in recent years. In particular governments around the world are now attempting to ease some of the pressure by investing in connectivity for trains. The UK government is investing £50m to ensure passengers benefit from free Wi-Fi by 2017. The state government of Victoria, Australia, has committed $40m to tackle mobile coverage blackspots across the region’s Geelong, Ballarat, Bendigo, Seymour and Traralgon lines.

Although these developments are welcome, ultimately the ‘right’ solution needs to work for train operators, mobile network operators and rail passengers alike. All industry stakeholders now need to work together to produce business cases that can benefit every party involved.

At this time of shifting market dynamics Real Wireless has put together a short guide assessing the current situation with regards to wireless on trains along with our independent expert recommendations for ensuring connectivity remains on track.

Solving the Wi-Fi challenge on trains

4479165212_390daa988d_oIt’s been just over a year since the government announced its ambitious target to have free Wi-Fi on trains by 2017. While the intention is obviously a good one (who doesn’t want connectivity on trains?) there are still significant barriers in place that are hindering the country’s changes of getting anywhere close to that target.

I was recently at an event called Going Underground a couple of weeks ago discussing the ins and outs of connectivity on trains. What’s clear from that event is that there are technical challenges with on-board Wi-Fi that won’t go away. Wi-Fi’s access technology “Carrier Sense Multiple Access – Collision Avoidance” (CSMA-CA) is not designed for high-density environments, such as busy commuter trains in rush hour with high capacity demand caused by a large number of concurrent users. In other words, when everyone on a train is trying to use on-board Wi-Fi at the same time to stream live sport or the latest Game of Thrones episode, we drive Wi-Fi into its limitations.

The technical limitation in such a high usage scenario lies in the way the Wi-Fi access points and devices interact with each other. To avoid data collisions, devices “sense” the Wi-Fi channel — listening to see if another device is transmitting data. Once a device sees that the channel is busy, it backs off to avoid collision of data, and a counter starts to count down before the device checks again to see if the air interface (the channel) is available. So, when too many users try to transmit data, devices start to go through a downward spiral of repeatedly backing off and trying again, thereby reducing the AP efficiency by 50% or even much more depending on the number of users trying to access it — resulting in less capacity per access point for more concurrent users.

Peak hour trains on busy commuter routes in particular take a triple whammy when it comes to on-board Wi-Fi:

  1. The sheer number of people trying to access a single access point overloads the system
  2. The sheer amount of bodies in one train can attenuate the signal between the access point and devices, rendering it poor (meaning low efficiency) to useless
  3. Peak trains tend to be full of commuters whose data needs tend to be far greater than non-commuters, which, again, overloads the system

Small cells, in particular femtocells, might be a better solution than Wi-Fi because they are more efficient when handling a high number of concurrent users and high traffic — but that still doesn’t solve the the backhaul challenge. Performance is always limited to whatever the backhaul can achieve, which is typically 4G. Hence, if there’s no mobile coverage, the whole on-board connectivity system — whether it’s Wi-Fi or femtocell based — is useless. Connectivity systems could use satellite backhaul for rural locations, but that in itself is a very expensive option. Alternatively, connectivity systems can use on-board repeaters, which don’t need backhaul and bring the signal outside the train to the users inside. On-board repeaters, though, still rely on reasonable outside coverage.

However, none of these technical challenges are insurmountable, with the exception of the inherent Wi-Fi technology challenges.

We do believe that the main barrier to enhancing on-board connectivity is the business model. We also believe that the requirement for trains should be on-board connectivity and capacity, independent of specific technology (such as Wi-Fi). At the moment, mobile network operators don’t have a revenue incentive to cover railway tracks or install on-board equipment because in a world of fixed and all-you-can-eat data packages, the average revenue per user (ARPU) doesn’t increase with incremental coverage and capacity on trains.

Therefore, the business case is the biggest bottleneck at the moment to improving on-board connectivity. If the government truly wants to provide Wi-Fi on 90% of journeys by 2018, it will have to manufacture a business case through regulation in order to kick things along.

Our own research a few years ago found that a clear business case could exist if the industry looks beyond Wi-Fi to mobile connectivity as a whole. We also found that on-board equipment deployment is cheaper than improving outdoor coverage to such a level that users inside the train could be served from outside. A business case would therefore have to clearly list the benefits to multiple parties, including advertisers (amongst many others), who would be able to clearly see the opportunity for ad revenue based on the length of passenger journeys, and rail companies, who could use the connectivity to improve day-to-day operations to become more efficient.

Technology and retail: how wireless is key to bricks-and-mortar shopping

3174937547_838753c182_oThe media love a good “the high street is dying — online shopping is the future” story. Compelling headlines that talk about the death of one industry in favour of another make for an entertaining read, and who wants the truth to stand in the way of a good headline?

The reality is that bricks-and-mortar shops are not disappearing. On the contrary, retailers and property owners are taking actions to encourage people to use the “real” experience of shopping to complement the online experience. However, the retail stores of today are significantly different to those in the past in how they attract and retain customers. Although each shop will have its own unique strategy for attraction and retention, the key trend of 2015 points to improving the customer experience and we at Real Wireless see technology playing a crucial role in achieving this.

For stores with big budgets, the technology can often be headline grabbing and quirky, and can potentially offer consumers experiences they don’t typically see every day. Harrods, for example, installed augmented reality window displays for its Tissot watch range.

But, of course, most stores are unlikely to want to invest in technology like that, certainly not at the early stage of any technology initiative. However, the premise of using tech to improve the customer experience remains important to every store. So, most retailers are focusing on how to capitalise on a piece of technology that almost every consumer has in their pocket nowadays — the smartphone — in a way that enhances the experience and ultimately improves business performance.

As consumers become more accustomed to using smartphone technology, they increasingly expect retailers to replace loyalty cards with a digital app, provide personalised discounts based on the consumer’s own preferences, interact with consumers through social media, accept contactless payment, let consumers themselves scan items to speed up the checkout process, and roll out countless other enhancements. At the same time the customer may want to do online comparisons and get an opinion from their friends through social media before making the purchase, so the customers need to be able to get online.

The key to capitalising on smartphones lies in wireless connectivity — not just Wi-Fi, but 3G and 4G too. If a retailer fails to meet today’s consumer’s connectivity needs, they risk losing out on sales. But by addressing those needs, retailers can enhance the customer experience, driving brand loyalty and, ultimately, improving sales.

To help retailers get the most out of good connectivity, Real Wireless has published a report detailing the importance of wireless for the retail industry, the business case for generating a return on technology investment, and how to overcome the challenges that any rollout will face.

The report, entitled Wireless and the omni-channel time bomb, is available free of charge from today.

Wireless technology and commercial property: why should property developers care?

CommIn 2015, mobile users — including both you and I — expect to be able to use our mobile devices and laptops wherever we are.

More than this though, we expect to receive the same level of service, functionality and, increasingly, data speeds, regardless of the environment we are in.

This has big implications for property developers and others that provide commercial property. While most people have been aware of how important mobile connectivity has been within their buildings for business tenants, in the past this has typically been basic voice and SMS access.

In the past developers and building owners typically found that there is adequate coverage and service for these technologies inside their buildings with minimal additional effort; the external mobile network could penetrate their building and serve their tenants to a sufficient level.

However, as mobile data connectivity (and the expectations of users of these services to receive good data speeds) has spread, the need for dedicated infrastructure inside a building to meet these needs has also grown.

It’s also no longer sufficient to rely upon Wi-Fi alone to provide data connectivity, with residents expecting 3G and 4G devices to work inside a building as well as they do outside.

Mobile operators, meanwhile, are becoming increasingly reticent to fund the rollout of this infrastructure for all but the very largest of their corporate customers.

It is therefore increasingly expected that the building owner themselves will invest in the infrastructure required to provide mobile services to people inside the building.

We’ve therefore created a guide that helps outline the wireless need — and business case for installation — that modern commercial property developers face. It outlines how wireless can improve current business models and practices, helping to both attract and retain tenants through enhanced connectivity.

After all, it would seem completely illogical to construct a commercial building that did not include a water or electricity supply, as no business would become a tenant. As mobile adoption amongst consumers and businesses becomes so universal, it’s time wireless connectivity was treated the same.

The guide ‘Wireless technology and commercial property’ is available free of charge.